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Where to find the material

e Alternative 1:
* WWW.ES(C.0rg, go to*“lectures™
* Find links there

e Alternative 2:

» Scan QR code
* simenkva.github.io/esgc_material



http://www.esqc.org/

Matrices

We pick up from last time



Matrices = linear transformations
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Space of matrices

o A matrix iIs a table n

A
(
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A e F"™" = M(m, n; P) Ary Axm
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e \VVectors are also matrices!

x € F' = F*! = M@, 1;F)




Matrix—matrix product

* C(x) = A(B(x)) 1s a linear transformation, too.

Definition : Matrix product

Let A € M(n,m,F) and B € M(m, o0,F). Then the matrix product C = AB € M(n, 0;F) 1s defined by the
formula

n
Cik = ZAiijk- (1)
j=1
The matrix product satisfies:
1. A(BC) = (AB)C associativity
2. A+ B)IC=AC+BCand A(B+C)=AB+ AC distributivity

However, the matrix product is not commutative, i.e., AB # BA in general!



Computing the matrix product

AB=C Cij = ZAikBkj
X
A1 A - Aun|[Bun B -+ Bl [Cii Ci
Ay Axp - Ap||Bar Bx - By C1 Cx
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Also, since X IS a matrix, we write
A(X) = AX




Important matrix operations

* Transpose: ' T
0 1 O 1 O
(A")ij=Aj i 2| = [1 ) _1}
0 -1
« Hermitian adjoint:
0 1] ‘L
(A")ij = Aji 12 = [(i) _21 _01}
/Tlo -1
* Inner product as matrix product: [ . xH

(x,y) = x'y




More on matrices

Matrices are very central to quantum chemistry and numerical methods in general



Examples of matrices working in 2D
Euclidean space

« Show Jupyter notebook
* | ecture 2 — plane transformations.ipynb

« Examples of: rotation, reflection, scaling



https://raw.githubusercontent.com/simenkva/esqc_material/main/notebooks/Lecture%202%20-%20plane%20transformations.ipynb

The structure of a matrix

A matrix has a set of columns

(A1 A - Ap
Ay Axp - Ay

A= . . . | =1la,a2,--- ,a,]
_Aml Am2 Tt Amn_

* What happens if we compute Ax ?

n A linear combination of

the columns
AX = E a; X;
=1



Definition : Column space

Foramatrix A = [ay, - ,a,] € F”" , the column space is the set of all linear
combinations of the columns a;. This 1s also denoted the range or image of
A, since 1t 1s the set of all vectors Ax.

The column space is a linear vector space, written

Span{ala a29 Tt 9an}' (1)

The rank of the matrix 1s the dimension of the column space. (It 1s a
fact that the dimension of the row space 1s the same as the dimension of the
column space.)

The row space 1s defined similarly.



Example

« What is the column space of the identity matrix?
* The columns are the standard basis vectors — a basis for [F3
« - 50 the column space should be IF3 as well!
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Systems of linear equations

e Let A € [Fnxn A main

» System of linear equations: problem in
linear algebra

Anixy +Apxy + -+ Apxn =1
Ayixy +Apxy + -+ Ayx, =,

AX =y

Anlxl + An2x2 + -t Annxn = Yn
* When does this system have a unigue solution?
« Answer: When the matrix has rank n/ col. space Is a basis



Yes, almost

Gaussian elimination e e

named after me,

_ _ or should be
* A method for solving linear systems

* Read about 1t In the lecture notes!

« Or watch some high-quality videos, e.g.
https.//www.youtube.com/watch?v=2GKES
usatVQ (MywWhyu)



https://www.youtube.com/watch?v=2GKESu5atVQ
https://www.youtube.com/watch?v=2GKESu5atVQ

Inverse matrix

« EXistence of unigue solution gives inverse matrix
Ax=y & x=Ay

AAT =A71A=1
« Example: Inverse of plane rotation matrix

Inverse given

cos(d)  sin(6) -l _ | cos(=0)  sin(-0) bv0p905ite
—sin(d) cos(6) ~ [=sin(=0) cos(—6) rotation!

* Non-existence: Singular matrix A.



Example cont.

cos(6) sin(6) |[|cos(d) —sin(B)
—sin(d) cos(@)||sin(@) cos(6)

cos? 0 + sin” @ —cos@sind +sinfcosf| [1 0
—sin@cosf + cosBsin b sin” @ + cosZ 6 {0 1



Special classes of matrices



Definition : Hermitian operator/matrix

A matrix A € M(n,n;F) 1s Hermitian 1if, for all x, y € F",

(x,Ay) = (AX,y), equivalently A" = A. (1)

2 1 4+1 3-2i
H=11-1 4 2+1
3+2i 2-1i 5




What’s so special about Hermitian A?

* Only Hermitian operators have real diagonal matrix elements

u”Au is always real

* In quantum mechanics, observables are modelled with operators.
 EXpectation value:

u’ Au

u’u

 Thus observables must be Hermitian!

E[A] := must be real




U
preserves

angles!

Definition : Unitary operator/matrix

A matrix U € M(n,n;F) 1s unitary if, for all x, y € F",

(Ux,Uy) = (x,y), equivalently UZU=UU" =1. (1)



What characterizes a unitary matrix?

« U is unitary if and only if the columns are orthonormal

U11

Ui --- Uy
Uy -+ Uy,

. :[ul,...,Ui,...
Ulz Unnd

’ un]



What does a unitary matrix do?

U changes basis from standard basis to arbitrary orthonormal basis
0

Uei




Example

e Rotation matrix

cos(d)  sin(8) B ~|cos(@) —sin(6)
—sin(@) cos(@)|  |sin(@) cos(8)




Matrix decompositions

Useful tools for characterizing and solving problems



Eigenvalue equation Here posed as an

“abstract” equation
in Hilbert space

* Central equation of quantum chemistry:

Hy) = E )

* When a basis Is introduced:

Hu = Eu

Matrix eigenvalue
problem (EVP)

 Can we find solutions? How many solutions?



— Theorem : Spectral theorem for Hermitian operators

Suppose A € F™" is Hermitian, i.e., A” = A. Then, there exists

an orthonormal basis {uy, - - - , u,}, and real numbers {1, - , 4,,},
such that

H u; = /l,‘ll,'
Equivalently,

A=) wiuf = UAU"
i=1

where u; 1s the ith column of U, and where A is a diagonal matrix
with elements A;; = 4;0;;.




Theorem : Singular value decomposition

Let A € M(n,m,F) be a matrix, and let k¥ = min(n, m). There
exists k singular values o; > 0 and k left singular vectors u;, and
k right singular vectors v;, such that

where U = [uy,--- ,ug], V = [vy, -+, v], 2 = diag(oy, - -+, 0%).
Equivalently,
AV,’ = O ;u;.

The rank of A 1s the number of nonzero singular values. The
decomposition is unique if all the singular values are distinct.




Example

* For example, useful for approximations of matrices
« Show Jupyter notebook with SVD of bitmap image



General finite-dimensional
vector spaces



A basis, but no
longer Euclidean dimension

Space of polynomials Space

Po={f 10,115 Clf(@) =a+air+ax’ ++a,, aeC™!]

* Polynomials of degree <n
« A simple function space derivative
« Show: Jupyter notebook as a matrix!
« Differentiation operator (n = 4)

Dx' = ix"™! Dji=10ji-1, D=

[l =l=R=N=
SO0 O -
O OO N
SO WO O
O ROCOO




Space of matrices

* The space M(n) of square matrices (over some field) Is a vector space
(A+ B)ij =Aij+ Bij, (aA)ij = aA;;

* It is equal to F™, m = n? dimensions
« But we have an additional structure:

A, Be M(n) = C =AB e M(n)
 Vector space with vector-vector multiplication = algebra



A finite-dimensional C*-algebra

* In the second-quant lectures,

ce ¢l {ce,cl} = Op

 WWe can consider an operator which is a polynomial

a’()]l + Z Qi C + Z'Bkcz
P P
+ Z QeCrCe + Z,kacch + Z WC}QCZ
Kl Kl Kl

If N spin-orbitals: max N particles, so max degree is 2N
S0 a finite dimensional vector space of operators
 Algebra: A vector space with a multiplication operation



Inner product, norm

* What these examples lack compared to Euclidean space:
A sense of distance

 Euclidean space, as model of reality, comes with the intuition of which points
are close to each other

.
.
N
.
.
-
.
.
.
‘s
.

All points y with ||y — x|| < €



General vector spaces

Vector space

(linear
Mathematical abstraction
> structure)

Euclidean space
Comes with

linear structure +
inner product

Topology, Other

e.g., inner structures,
product, norm, e.g.,

or metric multiplication



Definition : Vector space

A vector space over the field F is a set V together with a binary vector addition + : VXV —
V and scalar multiplication - : F X V — V such that, for all x, y, z € Vand all ,8 € F,
the following axioms are true:

.

. There exists x” such that x +

There exists a0 € V such that 0 + x = all x eV

addition

identity element for

x+O+2=(x+y)+z2 associativity for addition

X+y=y+x commutativity for addition

nverse element for addition

.(@B) - x=a-(B-x) Wscalar and field multiplications
Clex=x identity for scalar multiplication
(a+p)x=a-x+B-x distributivity of scalar multiplication

a-(x+y)=a-x+a-y distributivity of scalar multiplication



Definition : Linear independence, dimension

Let V be a vector space, and L C V a subset. The set L is linearly indepdenent if for any
finite set {v; | 1 <i <k} C L, we have

k
Zaivi =0 = a; = O for all i
i=1

The dimension of V 1s the cardinality of the largest linearly independent subset of V.

* In Euclidean space: the standard basis
 Polynomials: the various x!



Basis for finite-dimensional spaces

Definition : Basis

Let V be a vector space of finite dimension n. A basis 1s a linearly independent set of

vectors {by, - -, b,}, with exactly n elements.
Theorem
If B={by,---,b,}1s a basis for a the vector space V, dim(V) < +oo, then any v € V can

be uniquely decomposed as

V= ivibi. (1)
i=1




Example

 The standard basis in Euclidean space:

n
X = Z X;€;
i=1

* The monomials in polynomial space:

n

pv) = ) ax

i=0
A basis IS never unique



Examples: bases in the plane

« Standard basis, non-orthogonal basis, and not-a-basis




Definition : Linear subspace

Let V be a vector space over F. A subset W C V 1s a linear subspace 1f 1t 1s closed under
vector addition and scalar multiplication, i.e., if

YweW, aweW, w;i+wreW, (1)
and 1f 0 € W.
We will see
A line through the origin this much
A plane through the origin later

Polynomials without constant terms
Square integrable wavefunctions with finite kinetic energy




All finite dimensional vector spaces are
isomorphic —the same

* (... when 1t comes to the linear structure)

n n
v:inbi — xeF av:Zaxib,- —  axeF
i=1 i=1

n
Vi + Vv = Z(xil +xp)b; — X1 +xy €F
i—1

Action of
operator in the
given basis

 And linear transformations become .... matrices!

Ay = Z A;ix;b
L



Finite-dimensional Hilbert spaces

Definition : Inner product

Let V be a vector space. An inner product {-,-) : V X V — F 1s a map which satisfies the
following axioms:

1. (x,x)>0, (x,x)=01fandonlyifx=20 non-negative
2. (x,ay+PBz) = al{x,y)+L{x,z2) linearity
3. {ay + Bz,x) = a{y, x) + B{z, x) conjugate linearity
4. (x,y) =y, X) hermiticity

* Finite dim vector space + inner product = Hilbert space



All finite-dimensional Hilbert spaces are the
same

e ... when an orthonormal basis is selected "OVir.'af
- . . . ) ] ] Matrix
 Let V be a finite dim Hilbert space with given basis

<V, V’> — i i)_c,- <bi,bj> Xj = XHSX,

i=1 j=1
* Inner prod induces an inner product on F"
* It Is not the Euclidean inner product unless

Orthonormal
basis

(bi,bjy =6;;, < S§=1



Remark

In order to study (the vector space structure of) finite dimensional Hilbert spaces, including the linear
operators over these spaces, it suffices to study F" and matrices M(n, m, F).




End of lecture 2

* That’s 1t for today!
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